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Abstract. The quantum tunnellings of the magnetization vector in single-domain ferromagnetic
nanoparticles placed in an external magnetic field at an arbitrarily directed angle in the ZX-
plane are studied theoretically. We consider magnetocrystalline anisotropies with trigonal and
hexagonal crystal symmetry. By applying the instanton technique in the spin-coherent-state path-
integral representation, we calculate the tunnel splittings, the tunnelling rates, and the crossover
temperatures in the low-barrier limit for different angle ranges of the external magnetic field
(θH = π/2, π/2 � θH � π , and θH = π ). Our results show that the tunnel splittings, the
tunnelling rates, and the crossover temperatures depend distinctly on the orientation of the external
magnetic field, which provides a possible experimental test for magnetic quantum tunnelling in
nanometre-scale single-domain ferromagnets.

1. Introduction

Recently, there has been a great experimental and theoretical effort to observe and interpret
macroscopic quantum tunnelling (MQT) and coherence (MQC) in nanometre-scale magnets
at sufficiently low temperature [1]. Theoretical investigations based on the spin-coherent-
state path integral were performed for single-domain ferromagnetic (FM) nanoparticles; these
showed that MQT and MQC were possible in magnets containing as many as 105–106 spins.
Several experiments involving resonance measurements, magnetic relaxation, and hysteresis
loop study for various systems showed either temperature-independent relaxation phenomena
or a well-defined resonance depending exponentially on the total number of spins, which
supported the idea of magnetic quantum tunnelling [1].

More recently, the tunnelling behaviours of the magnetization vector were studied
extensively for single-domain FM nanoparticles in the presence of an external magnetic field
applied at an arbitrary angle. The MQT problem for FM particles with uniaxial crystal
symmetry was first studied by Zaslavskii who calculated the tunnelling exponent, and the
pre-exponential factors and their temperature dependences in the low-barrier limit with the
help of a mapping of the spin system onto a one-dimensional particle system [2]. For the
same crystal symmetry, Miguel and Chudnovsky [3] calculated the tunnelling rate by applying
the imaginary-time path integral, and demonstrated that the angular and field dependences
of the tunnelling exponent obtained by Zaslavskii’s method and by the path-integral method
coincide precisely. They also discussed the tunnelling rate at finite temperature and suggested
experimental procedures [3]. Kim and Hwang performed a calculation based on the instanton
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technique for FM particles with biaxial and tetragonal crystal symmetry [4], and Kim extended
the tunnelling rate for biaxial crystal symmetry to a finite temperature [5]. The quantum–
classical transition of the escape rate for FM particles with uniaxial crystal symmetry in an
arbitrarily directed field was investigated by Garanin, Hidalgo, and Chudnovsky with the
help of a mapping onto a particle moving in a double-well potential [6]. The switching-
field measurement was carried out on single-domain FM nanoparticles of barium ferrite
(BaFeCoTiO) containing about 105–106 spins [7]. The measured angular dependence of the
crossover temperature was found to be in excellent agreement with the theoretical prediction
[3], which strongly suggests MQT of the magnetization in the BaFeCoTiO nanoparticles.
Lü et al studied the MQT and MQC of the Néel vector in single-domain antiferromagnetic
(AFM) nanoparticles with biaxial, tetragonal, and hexagonal crystal symmetry in an arbitrarily
directed field [8].

In this paper, we extend the previous theoretical results obtained for the single-domain
FM particles with biaxial and tetragonal symmetry to ones for FM particles with a much more
complex structure placed in an external magnetic field at an arbitrarily directed angle in the
ZX-plane, on the basis of the instanton technique in the spin-coherent-state path-integral
representation. We consider magnetocrystalline anisotropies with trigonal and hexagonal
crystal symmetry. Both the Wentzel–Kramers–Brillouin (WKB) exponents and the pre-
exponential factors in the tunnelling rates for MQT and the tunnel splittings for MQC in
FM particles are evaluated analytically for different angle ranges of the external magnetic
field (θH = π/2, π/2 + O(ε3/2) < θH < π − O(ε3/2), and θH = π), and the temperature
which corresponds to the crossover from the thermal to the quantum regime is clearly
indicated for each case. Our results show that the distinct angular dependence, together
with the dependence of the WKB tunnelling rate and the crossover temperature on the
strength of the external magnetic field, may provide an independent experimental test for
the magnetic tunnelling in single-domain FM nanoparticles. The calculations performed in
this paper are semiclassical in nature, i.e., valid for large spins and in the continuum limit.
We analyse the validity of the semiclassical approximation, and find that the semiclassical
approximation is rather good for typical values of the parameters for single-domain FM
nanoparticles.

This paper is structured in the following way. In section 2, we briefly review the basic
ideas of the MQT and MQC in single-domain FM particles. In sections 3 and 4, we study the
quantum tunnelling of the magnetization vector for FM particles with trigonal and hexagonal
crystal symmetry in the presence of an external magnetic field applied in the ZX-plane with
a range of angles π/2 � θH � π . The conclusions are presented in section 5. In appendix
A, we explain briefly the computation of the pre-exponential factors in the WKB tunnelling
rate, and then apply this approach to obtain the tunnel splittings for FM particles with trigonal
crystal symmetry in a magnetic field applied perpendicular to the anisotropy axis (θH = π/2)
in detail.

2. MQT and MQC of the magnetization vector in FM particles

In this section we briefly review some basic ideas concerning MQT and MQC of the
magnetization vector in single-domain FM nanoparticles, on the basis of the instanton tech-
nique applied to the spin-coherent-state path integral [1, 11, 12].

The system of interest is a nanometre-scale single-domain ferromagnet at a temperature
well below its anisotropy gap. For such a FM particle, the tunnel splitting for MQC and the
tunnelling rate for MQT are determined by the imaginary-time amplitude for transition from
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an initial state |i〉 to a final state |f 〉:

Uf i = 〈f |e−HT |i〉 =
∫

D� exp(−SE) (1)

where SE is the Euclidean action and D� is the measure of the path integral. In the spin-
coherent-state path-integral representation, the Euclidean action can be expressed as

SE(θ, φ) = V

h̄

∫
dτ

[
i
M0

γ

(
dφ

dτ

)
− i

M0

γ

(
dφ

dτ

)
cos θ + E(θ, φ)

]
(2)

where V is the volume of the FM particle and γ is the gyromagnetic ratio. M0 = | �M| =
h̄γ S/V , where S is the total spin of FM particles. It is noted that the first two terms in
equation (2) define the topological Berry or Wess–Zumino, Chern–Simons term which arises
from the nonorthogonality of spin coherent states. The Wess–Zumino term has a simple
topological interpretation. For a closed path, this term equals −iS times the area swept out
on the unit sphere between the path and the north pole. The first term in equation (2) is
a total imaginary-time derivative, which has no effect on the classical equations of motion,
but is crucial for the spin-parity effects [9, 10]. However, for the closed instanton or bounce
trajectory described in this paper (as shown in the following), this time derivative gives a zero
contribution to the path integral, and therefore can be omitted.

In discussing macroscopic quantum phenomena, it is essential to distinguish between two
types of process: MQC (i.e., coherent tunnelling) and MQT (i.e., incoherent tunnelling). In
the case of MQC, the system in question performs coherent NH3-type oscillations between
two degenerate wells separated by a classically impenetrable barrier. Tunnelling between
neighbouring degenerate vacua can be described by the instanton configuration with nonzero
topological charge and leads to a level splitting of the ground states [11]. The tunnelling
removes the degeneracy of the original ground states, and the true ground state is a superposition
of the previous degenerate ground states. For the case of MQT, the system escapes from
a metastable potential well into a continuum by quantum tunnelling at sufficiently low
temperatures, and the tunnelling results in an imaginary part of the energy which is dominated
by the so-called bounce configuration with zero topological charge [11]. As emphasized by
Leggett, the two phenomena of MQC and MQT are physically very different, particularly from
the viewpoint of experimental feasibility [20]. MQC is a far more delicate phenomenon than
MQT, as it is much more easily destroyed by the environment [21], and by symmetry-breaking
fields with very small c-numbers that spoil the degeneracy.

In the semiclassical limit, the dominant contribution to the transition amplitude comes
from the finite-action solution (instanton) of the classical equation of motion. The motion of
the magnetization vector �M is determined by the Landau–Lifshitz equation

i
d �M
dτ

= −γ �M × dE( �M)

d �M (3)

which can also be expressed as the following equations in the spherical coordinate system:

i

(
dθ

dτ

)
sin θ = γ

M0

∂E

∂φ
(4a)

i

(
dφ

dτ

)
sin θ = − γ

M0

∂E

∂θ
(4b)

where θ and φ denote the classical path. Note that the Euclidean action equation (2) describes
the (1 ⊕ 1)-dimensional dynamics in the Hamiltonian formulation with canonical variables φ
and Pφ = S(1 − cos θ). The instanton’s contribution to the tunnelling rate � for MQT or the
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tunnel splitting � for MQC (not including the topological Wess–Zumino or Berry phase) is
given by [11, 12]

� (or �) = Aωp

(
Scl

2π

)1/2

e−Scl (5)

whereωp is the frequency of small oscillations near the bottom of the inverted potential, and Scl
is the classical action. The pre-exponential factor A originates from the quantum fluctuations
about the classical path, which can be evaluated by expanding the Euclidean action to second
order in the small fluctuations [11, 12]. In reference [12], Garg and Kim studied the general
formalism for calculating both the exponent and the pre-exponential factors in the WKB
tunnelling rates for MQT and MQC in single-domain FM nanoparticles. In appendix A, we
explain briefly the basic idea of this calculation, and then apply this approach to calculate
the instanton’s contribution to the tunnel splittings for MQC of the magnetization vector in
FM particles with trigonal crystal symmetry in an external magnetic field perpendicular to the
anisotropy axis (considered in section 3) in detail.

3. MQC and MQT for trigonal crystal symmetry

In this section, we study the tunnelling behaviours of the magnetization vector in single-domain
FM nanoparticles with trigonal crystal symmetry. The external magnetic field is applied in the
ZX-plane, at an angle in the range of π/2 � θH < π . Now the total energy E(θ, φ) can be
written as

E(θ, φ) = K1 sin2 θ −K2 sin3 θ cos(3φ)−M0Hx sin θ cosφ −M0Hz cos θ + E0 (6)

where K1 and K2 are the magnetic anisotropy constants satisfying K1 
 K2 > 0, and E0 is a
constant which makes E(θ, φ) zero at the initial orientation. As the magnetic field is applied
in the ZX-plane, Hx = H sin θH and Hz = H cos θH , where H is the magnitude of the field
and θH is the angle between the magnetic field and the ẑ-axis.

In the absence of an external magnetic field, the system reduces to one with threefold
rotational symmetry around the ẑ-axis and reflection symmetry in the XY -plane. The unit
vectors ẑ and −̂z define the two classical ground-state configurations. The amplitude for
transition between degenerate ground states can be suppressed to zero as a result of the
destructive Wess–Zumino phase if the system has time-reversal invariance at zero magnetic
field [10]. However, for the closed instanton or bounce trajectory described in this paper
(as shown in the following) the phase term in equation (2), proportional to dφ/dτ (not the
(dφ/dτ) cos θ term) gives a zero contribution to the integral equation (2) and, therefore, can
be omitted.

By introducing the dimensionless parameters

K2 = K2/2K1 Hx = Hx/H0 Hz = Hz/H0 (7)

equation (6) can be rewritten as

E(θ, φ) = 1

2
sin2 θ −K2 sin3 θ cos(3φ)−Hx sin θ cosφ −Hz cos θ + E0 (8)

where E(θ, φ) = 2K1E(θ, φ), and H0 = 2K1/M0. At finite magnetic field, the plane given
by φ = 0 is the easy plane, on which E(θ, φ) reduces to

E(θ, φ = 0) = 1

2
sin2 θ −K2 sin3 θ −H cos(θ − θH ) + E0. (9)

We denote as θ0 the initial angle and as θc the critical angle at which the energy barrier vanishes
when the external magnetic field is close to the critical value Hc(θH ) (to be calculated in the
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following). Then, the initial angle θ0 satisfies [dE(θ, φ = 0)/dθ ]θ=θ0 = 0, and the critical
angle θc and the dimensionless critical field Hc satisfy both [dE(θ, φ = 0)/dθ ]θ=θc,H=Hc

= 0
and [d2E(θ, φ = 0)/dθ2]θ=θc,H=Hc

= 0, which leads to

1

2
sin(2θ0)− 3K2 sin2 θ0 cos θ0 + H sin(θ0 − θH ) = 0 (10a)

1

2
sin(2θc)− 3K2 sin2 θc cos θc + Hc sin(θc − θH ) = 0 (10b)

cos(2θc)− 3K2(2 sin θc cos2 θc − sin3 θc) + Hc cos(θc − θH ) = 0. (10c)

After some algebra, Hc(θH ) and θc are found to be

Hc = 1[
(sin θH )2/3 + |cos θH |2/3

]3/2

×
[

1 + 3K2
1

(1 + |cot θH |2/3)1/2
+ 6K2

1

(1 + |cot θH |2/3)3/2

]
(11a)

sin2 θc = 1

1 + |cot θH |2/3

[
1 − 2K2

|cot θH |2/3

(1 + |cot θH |2/3)1/2
− 4K2

|cot θH |2/3

(1 + |cot θH |2/3)3/2

]
. (11b)

Now we consider the limiting case where the external magnetic field is slightly lower than
the critical field, i.e., ε = 1 −H/Hc � 1. In this practically interesting situation, the barrier
height is low and the width is narrow, and therefore the tunnelling rate in MQT or the tunnel
splitting in MQC is large. Introducing η ≡ θc − θ0 (|η| � 1 in the limit of ε � 1), expanding
[dE(θ, φ = 0)/dθ ]θ=θ0 = 0 about θc, and using the relations [dE(θ, φ = 0)/dθ ]θ=θc,H=Hc

= 0
and [d2E(θ, φ = 0)/dθ2]θ=θc,H=Hc

= 0, we obtain the approximation equation for η to the
order of ε3/2:

−εHc sin(θc − θH )− η2

(
3

4
sin 2θc + 3K2 cos 3θc

)

+ η

[
εHc cos(θc − θH ) + η2

(
1

2
cos 2θc − 3K2 sin 3θc

)]
= 0. (12)

Then E(θ, φ) reduces to the following equation in the limit of small ε:

E(δ, φ) = 2K2 sin2(3φ/2) sin3(θ0 + δ) + Hx sin(θ0 + δ)(1 − cosφ) + E1(δ) (13)

where δ ≡ θ − θ0 (|δ| � 1 in the limit of ε � 1), and E1(δ) is a function of only δ, given by

E1(δ) = −1

2

[
Hc sin(θc − θH )−K2(cos3 θc − 3

2
sin2 θc cos θc)

]
(3δ2η − δ3)

− 1

2

[
Hc cos(θc − θH )− 3K2(sin3 θc − 4 sin θc cos2 θc)

]
×

[
δ2

(
ε − 3

2
η2

)
+ δ3η − 1

4
δ4

]
− 3

2
K2(sin3 θc − 4 sin θc cos2 θc)δ

2ε. (14)

In the following, we will investigate the tunnelling behaviours of the magnetization vector
in FM particles with trigonal crystal symmetry for different angle ranges of the external
magnetic field: θH = π/2 and π/2 < θH < π .
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3.1. θH = π/2

For θH = π/2, we have θc = π/2 from equation (11b) and η = √
2ε(1 + 9K2/2) from

equation (12). Then E1(δ) of equation (14) reduces to

E1(δ) = 1

8
δ2(δ − 2η)2. (15)

A plot of the effective potential E1(δ) as a function of δ (=θ − θ0) for θH = π/2 is shown in
figure 1. Now the problem is one of MQC, where the magnetization vector resonates coherently
between the energetically degenerate easy directions at δ = 0 and δ = 2

√
2ε(1 + 9K2/2)

separated by a classically impenetrable barrier at δ = √
2ε(1 + 9K2/2). Substituting equ-

ation (15) into the classical equations of motion, we obtain the classical solution called the
instanton:

φ = iε

(
1 + 3K2 +

1

2
ε

)
1

cosh2(ωcτ )

δ =
√

2ε

(
1 +

9

2
K2

)
[1 + tanh(ωcτ )]

(16)

where ωc = √
ε/2(1 + 21K2/2 − ε/2), τ = ω0τ , and ω0 = 2K1V/h̄S. We can calculate

the classical action by integrating the Euclidean action equation (2) with the above classical
trajectory, and the result is found to be

Scl = 25/2

3
ε3/2S

(
1 +

15

2
K2 +

1

2
ε

)
. (17)
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Figure 1. The dependence on δ (=θ − θ0) of the effective potential E1(δ) for θH = π/2 (MQC).

Now we consider the transition exponent which is usually addressed by experiments.
Transitions between two states in a bistable system or escaping from a metastable state can
occur either due to the quantum tunnelling or via the classical thermal activation. In the
limit of temperature T → 0, the transitions are purely quantum mechanical and the rate
goes as � ∼ exp(−Scl), with Scl being the classical action or the WKB exponent which is
independent of temperature. As the temperature increases from zero, thermal effects enter
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in the quantum tunnelling process. If the temperature is sufficiently high, the decay from
a metastable state is determined by processes of thermal activation, and the transition rate
follows the Arrhenius law, � ∼ exp(−U/kBT ), with kB being the Boltzmann constant and
U being the height of the energy barrier between the two states. Because of the exponential
dependence of the thermal rate on T , the temperature Tc characterizing the crossover from the
quantum to the thermal regime can be estimated as kBTc = U/Scl . For a quasiparticle with the
effective massM moving in one-dimensional potentialU(x), a more accurate definition of the
crossover temperature in the absence of any dissipation was presented by Goldanskii [13,14]:
kBT

′
c = h̄ωb/2π , where

ωb =
√

− U ′′(xb)/M

is the frequency of small oscillations near the bottom of the inverted potential, −U(x), and
xb corresponds to the bottom of the inverted potential. Below T ′

c , thermally assisted quantum
tunnelling occurs from the excited levels, that further reduces to the quantum tunnelling from
the ground-state level as the temperature decreases to zero. Above T ′

c , quantum tunnelling
effects are small and the transitions occur due to the thermal activation to the top of the barrier.
For the MQT problem, i.e., the problem of decay from the metastable state, both Tc and T ′

c

can be used as definitions of the crossover temperature corresponding to the crossover from
classical to quantum behaviour, since the quantum escaping from a metastable state is a process
of incoherent tunnelling. However, for the MQC problem, i.e., the problem of resonance
between degenerate states, the situation is different. As the temperature grows from zero, three
kinds of transition should be taken into account: quantum coherence between the degenerate
ground-state levels (coherent tunnelling), quantum tunnelling from the excited levels (thermally
assisted tunnelling or incoherent tunnelling), and classical over-barrier transition (incoherent
transition). Two kinds of crossover temperature can be defined to distinguish the three regimes.
The Goldanskii definition T ′

c for the MQC problem corresponds to the crossover from quantum
coherence between the degenerate ground-state levels (coherent tunnelling) to quantum
tunnelling from the excited levels (thermally assisted tunnelling or incoherent tunnelling),
whileTc corresponds to the crossover from quantum coherence between the degenerate ground-
state levels (coherent tunnelling) to classical over-barrier transition (incoherent transition).
Experiments involving magnetic relaxation and resonance measurements for various systems
have shown either temperature-independent relaxation phenomena (in MQT) or a well-defined
resonance (in MQC) below some crossover temperature, which strongly support the existence
of quantum tunnelling processes [1]. And more recently, the crossover from quantum to
classical behaviour and the associated phase transition have been investigated extensively in
MQT and MQC in single-domain FM particles [14–18]. It is noted that the sharpness of
the crossover between the thermal and quantum regimes also depends on the strength of the
dissipation in the environment. In the case of low dissipation, which is common for magnetic
systems, its effect on the crossover is small [13, 14].

For the single-domain FM nanoparticle in a magnetic field applied at θH = π/2, the
magnetization vector resonates coherently between the energetically degenerate easy directions
at δ = 0 and δ = 2

√
2ε(1 + 9K2/2) separated by a classically impenetrable barrier at

δ = √
2ε(1 + 9K2/2), and the height of energy barrier is found to be U = K1V ε

2(1 + 18K2).
Then, equating Scl to U/kBT , we obtain that the crossover from quantum coherence between
the degenerate ground-state levels (coherent tunnelling) to classical over-barrier transition
(incoherent transition) occurs at

kBTc = 3

25/2
ε1/2K1V

S

(
1 +

21

2
K2 − 1

2
ε

)
. (18)
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For this MQC problem, the Goldanskii definition of T ′
c corresponding to the crossover

from quantum coherence between the degenerate ground-state levels (coherent tunnelling) to
quantum tunnelling from excited levels (thermally assisted tunnelling or incoherent tunnelling)
becomes kBT ′

c = h̄ωb/2π , where ωb = ωbω0, with

ωb ≡
√

−E′′
(δm)/M

the frequency of small oscillations of the magnetization vector near the bottom of the inverted
potential, M−1 = (1 + 12K2 − ε), and δm the position of the energy barrier. For the present
case, δm = √

2ε(1 + 9K2/2) and ωb = √
ε(1 + 21K2/2 − ε/2) = √

2ωc. Then it is easy to
obtain that

kBT
′
c = 1

π
ε1/2K1V

S

(
1 +

21

2
K2 − 1

2
ε

)
. (19)

Comparison of equations (18) and (19) shows that Tc ≈ 1.67T ′
c , which is consistent with the

physical interpretation for quantum–classical transition in the MQC problem.
It is noted that the quantum tunnellings of the magnetization vector in single-domain

FM nanoparticles are studied with the help of the instanton technique in the spin-coherent-
state path-integral representation, which is semiclassical in nature, i.e., valid for large spins
and in the continuum limit. Therefore, one should analyse the validity of the semiclassical
approximation. It is well known that for this approach to be valid, the tunnelling rate must be
small, which indicates that the WKB exponent or the classical action Scl 
 1. Moreover, the
energy h̄ωb of zero-point oscillations around the minimum of the inverted potential −E1(δ)

should be sufficiently small compared to the height of the barrier, U = 2K1VE1(δm) . For the
single-domain FM nanoparticle with trigonal crystal symmetry in a magnetic field applied at
θH = π/2, it is easy to show that the WKB exponent is approximately given by

B � U

h̄ωb
= 1

2
ε3/2S

(
1 +

15

2
K2 +

1

2
ε

)
(20)

which agrees up to the numerical factor with the result for the classical action in equation (17)
obtained by applying the explicit instanton solution. For typical values of the parameters for
single-domain FM nanoparticles, K1 � 108 erg cm−3, K2 � 105 erg cm−3, and the total spin
S = 106, we obtain that B � U/h̄ωb ≈ 15.8 from equation (20) and Scl ≈ 59.6 for ε = 0.001
from equation (17). In this case the semiclassical approximation should be already rather good.

By applying the instanton technique for FM particles in the spin-coherent-state path-
integral representation [11, 12], we obtain the instanton’s contribution to the tunnel splitting
as (for a detailed calculation see appendix A)

h̄�0 = 213/4

π1/2
(K1V )ε

5/4S−1/2

(
1 +

57

4
K2 − 1

4
ε

)
e−Scl (21)

where the WKB exponent or the classical action Scl has been presented in equation (17).
Now we apply the effective Hamiltonian approach to evaluate the ground-state tunnel

splitting [19]. For the present case, the effective Hamiltonian can be written as

Heff =
[

0 −h̄�0

−h̄�0 0

]
. (22)

A simple diagonalization of Heff shows that the eigenvalues of this system are ±h̄�0. There-
fore, the splitting of the ground state due to resonant coherently quantum tunnelling of the
magnetization vector between energetically degenerate states is h̄� = 2h̄�0, where h̄�0 is
shown in equation (21) with equation (17) for single-domain FM particles with trigonal crystal
symmetry in a magnetic field applied perpendicular to the anisotropy axis (θH = π/2).
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3.2. π/2 < θH < π

For π/2 < θH < π , the critical angle θc is in the range of 0 < θc < π/2, and η ≈ √
2ε/3.

Then E1(δ) of equation (14) reduces to

E1(δ) = 1

2

|cot θH |1/3

1 + |cot θH |2/3

[
1 − 15

2
K2

1

(1 + |cot θH |2/3)1/2

]
(
√

6εδ2 − δ3). (23)

The dependence of the effective potential E1(δ) on δ (=θ − θ0) for θH = 3π/4 is plotted in
figure 2. Here,K2 = 0.001. Now the problem becomes one of MQT, where the magnetization
vector escapes from the metastable state at δ = 0, φ = 0 through the barrier by quantum
tunnelling. Substituting equation (23) into the classical equations of motion, the classical
solution called bounce is found to be

φ = i(6ε)3/4|cot θH |1/6(1 + |cot θH |2/3)1/2

[
1 +

ε

2
− 9

2
K2(1 + |cot θH |2/3)1/2

+
K2

4

2|cot θH |2/3 − 9

(1 + |cot θH |2/3)1/2
+ K2

|cot θH |2/3 − 3

(1 + |cot θH |2/3)3/2

]
sinh(ωcτ )

cosh3(ωcτ )
(24)

and

δ =
√

6ε/ cosh2(ωcτ )

which corresponds to the variation of δ from δ = 0 at τ = −∞ to the turning point δ = √
6ε

at τ = 0, and then back to δ = 0 at τ = +∞, where

ωc = 31/42−3/4ε1/4 |cot θH |1/6

1 + |cot θH |2/3

[
1 − ε

2
+

9

2
K2(1 + |cot θH |2/3)1/2

+
K2

4

2|cot θH |2/3 − 21

(1 + |cot θH |2/3)1/2
+ K2

|cot θH |2/3 + 3

(1 + |cot θH |2/3)3/2

]
.
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Figure 2. The dependence on δ (=θ − θ0) of the effective potential E1(δ) for θH = 3π/4 (MQT).
Here, K2 = 0.001.
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The associated classical action is then given by

Scl = 31/4217/4

5
Sε5/4|cot θH |1/6

[
1 +

ε

2
− 9

2
K2(1 + |cot θH |2/3)1/2

− K2

2

|cot θH |2/3 + 9/2

(1 + |cot θH |2/3)1/2
−K2

|cot θH |2/3 + 3

(1 + |cot θH |2/3)3/2

]
. (25)

For this case, the barrier height is

U = 2K1VE1(δm) = 27/2

33/2

|cot θH |1/3

1 + |cot θH |2/3

[
1 − 15

2
K2

1

(1 + |cot θH |2/3)1/2

]
ε3/2(K1V )

at δm = 2(6ε)1/2/3, and the frequency of small oscillations of the magnetization vector around
the bottom of the metastable well is

ωb = 31/421/4ε1/4 |cot θH |1/6

1 + |cot θH |2/3

[
1 − ε

2
+

9

2
K2(1 + |cot θH |2/3)1/2

+
K2

4

2|cot θH |2/3 − 21

(1 + |cot θH |2/3)1/2
+ K2

|cot θH |2/3 + 3

(1 + |cot θH |2/3)3/2

]
= 2ωc.

Then the WKB exponent or the classical action B is approximately given by

B � U

h̄ωb
= 29/4

37/4
Sε5/4|cot θH |1/6

[
1 +

ε

2
− 9

2
K2(1 + |cot θH |2/3)1/2

− K2

2

|cot θH |2/3 + 9/2

(1 + |cot θH |2/3)1/2
−K2

|cot θH |2/3 + 3

(1 + |cot θH |2/3)3/2

]
(26)

which is consistent with equation (25) up to the numerical factor. After a simple calculation,
we obtain the crossover temperature as

kBTc = 5

23/437/4
ε1/4K1V

S

|cot θH |1/6

1 + |cot θH |2/3

[
1 − ε

2
+

9

2
K2(1 + |cot θH |2/3)1/2

+
K2

2

|cot θH |2/3 − 21/2

(1 + |cot θH |2/3)1/2
+ K2

|cot θH |2/3 + 3

(1 + |cot θH |2/3)3/2

]
(27)

corresponding to the transition from the quantum to the thermal regime. For a nanometre-
scale single-domain FM particle, typical values of the parameters for the magnetic anisotropy
coefficients are K1 = 108 erg cm−3, and K2 = 105 erg cm−3. The radius of the FM particle is
about 12 nm and the sublattice spin is 106. If ε = 0.001, we obtain that Tc(135◦) � 203 mK
corresponding to the crossover from the quantum to the classical regime, which compares
well with the experimental result of 0.31 K for single-domain FM nanoparticles of barium
ferrite (BaFeCoTiO) [7]. Note that, even for ε as small as 10−3, the angle corresponding to
an appreciable change of the orientation of the magnetization vector by quantum tunnelling is
δ2 = √

6ε rad > 4◦.
The classical action Scl can be obtained by solving numerically the equations of motion

(4a) and (4b). In figure 3 we present the θH -dependence of Scl with ε = 0.001 andK2 = 0.001
for π/2 < θH < π obtained by numerical and analytical calculations. As is noted in the figure,
the analytical result obtained from equation (25) is almost valid over the whole range of angles
π/2 < θH < π .

By applying the formulae in reference [12], and using equation (25) for the WKB exponent
or the classical action, we obtain the tunnelling rate � of the magnetization vector in single-
domain FM nanoparticles with trigonal crystal symmetry in a magnetic field applied in the
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Figure 3. The θH -dependence of the relative classical action Scl(θH )/Scl(θH = 3π/4) in the
trigonal symmetry with ε = 0.001 and K2 = 0.001 obtained by numerical and analytical
calculations.

range of π/2 < θH < π as

� = 231/837/8

π1/2

V

h̄
K1S

−1/2ε7/8 |cot θH |1/4

1 + |cot θH |2/3

[
1 − ε

4
+

9

4
K2(1 + |cot θH |2/3)1/2

+
K2

4

|cot θH |2/3 − 51/2

(1 + |cot θH |2/3)1/2
+
K2

2

|cot θH |2/3 + 3

(1 + |cot θH |2/3)3/2

]
e−Scl . (28)

4. MQC and MQT for hexagonal crystal symmetry

In this section, we study the quantum tunnelling of the magnetization vector in single-domain
FM particles with hexagonal crystal symmetry whose magnetocrystalline anisotropy energy
Ea(θ, φ) at zero magnetic field can be written as

Ea(θ, φ) = K1 sin2 θ + K2 sin4 θ + K3 sin6 θ −K ′
3 sin6 θ cos(6φ) (29)

where K1, K2, K3, and K ′
3 are the magnetic anisotropic coefficients. The easy axes are ±̂z

for K1 > 0. When we apply an external magnetic field at an arbitrarily directed angle in the
ZX-plane, the total energy of this system is given by

E(θ, φ) = Ea(θ, φ)−M0Hx sin θ cosφ −M0Hz cos θ + E0. (30)

By choosing K ′
3 > 0, we take φ = 0 to be the easy plane, at which the potential energy can

be written in terms of dimensionless parameters as

E(θ, φ = 0) = 1

2
sin2 θ + K2 sin4 θ + (K3 −K

′
3) sin6 θ −H cos(θ − θH ) + E0 (31)

where K3 = K3/2K1 and K
′
3 = K ′

3/2K1.
Then the initial angle θ0 is determined by [dE(θ, 0)/dθ ]θ=θ0 = 0, and the critical

angle θc and the dimensionless critical field Hc by both [dE(θ, 0)/dθ ]θ=θc,H=Hc
= 0 and
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[d2E(θ, 0)/dθ2]θ=θc,H=Hc
= 0, which leads to

1

2
sin(2θ0) + H sin(θ0 − θH ) + 4K2 sin4 θ0 + 6(K3 −K

′
3) sin5 θ0 cos θ0 = 0 (32a)

1

2
sin(2θc) + Hc sin(θc − θH ) + 4K2 sin4 θc + 6(K3 −K

′
3) sin5 θc cos θc = 0 (32b)

cos(2θc) + Hc cos(θc − θH ) + 4K2(3 sin2 θc cos2 θc − sin4 θc)

+ 6(K3 −K
′
3)(5 sin4 θc cos2 θc − sin6 θc) = 0. (32c)

Under the assumption that |K2|, |K3 − K
′
3| � 1, we obtain the dimensionless critical field

Hc as

Hc = 1[
(sin θH )2/3 + |cos θH |2/3

]3/2

[
1 +

4K2

1 + |cot θH |2/3
+

6(K3 −K
′
3)

(1 + |cot θH |2/3)2

]
. (33)

In the limit of small ε = 1 −H/Hc, equation (32a) becomes

−εHc sin(θc − θH ) + η2
[
(3/2)Hc sin(θc − θH ) + 3K2 sin(4θc)

+ 12(K3 −K
′
3) sin3 θc cos θc(5 − 8 sin2 θc)

]
+ η

{
εHc cos(θc − θH )

− η2
[
(1/2)Hc cos(θc − θH ) + 4K2 cos(4θc)

+ 12(K3 −K
′
3) sin2 θc(5 − 20 sin2 θc + 16 sin4 θc)

]} = 0 (34)

where η ≡ θc − θ0 which is small for ε � 1. On introducing a small variable δ ≡ θ − θ0

(|δ| � 1 in the limit of ε � 1), the total energy becomes

E(δ, φ) = K
′
3 [1 − cos(6φ)] sin6(θ0 + δ) + Hx(1 − cosφ) sin(θ0 + δ) + E1(δ) (35)

where E1(δ) is a function of only δ given by

E1(δ) =
[

1

2
Hc sin(θc − θH ) + K2 sin(4θc)

+ 4(K3 −K
′
3)(5 sin3 θc cos3 θc − 3 sin5 θc cos θc)

]
(δ3 − 3δ2η)

+

[
1

8
Hc cos(θc − θH ) + K2 cos(4θc)

+ 3(K3 −K
′
3) sin2 θc(sin4 θc − 10 sin2 θc cos2 θc + 5 cos4 θc)

]
× (δ4 − 4δ3η + 6δ2η2 − 4δ2ε) + εδ2

[
4K2 cos(4θc)

+ 12(K3 −K
′
3) sin2 θc(sin4 θc − 10 sin2 θc cos2 θc + 5 cos4 θc)

]
. (36)

In the following we investigate the MQC and MQT of the magnetization vector in FM
particles with hexagonal crystal symmetry for different angle ranges of the external magnetic
field: θH = π/2, π/2 + O(ε3/2) < θH < π − O(ε3/2), and θH = π .

4.1. θH = π/2

For θH = π/2, i.e., the external magnetic field is applied perpendicular to the anisotropy axis,
we obtain that θc = π/2 and η = √

2ε[1 − 4K2 − 12(K3 −K
′
3)]. Now E1(δ) becomes

E1(δ) = 1

8

[
1 + 12K2 + 30(K3 −K

′
3)

]
δ2

{
δ − 2

√
2ε

[
1 − 4K2 − 12(K3 −K

′
3)

]}2
. (37)
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Substituting equation (37) into the classical equations of motion, we obtain the following
instanton solution:

φ = iε
[
1 +

ε

2
− 4K2 − 18K

′
3 − 6(K3 −K

′
3)

] 1

cosh2(ωcτ )

δ =
√

2ε
[
1 − 4K2 − 12(K3 −K

′
3)

]
[1 + tanh(ωcτ )]

(38)

which corresponds to the variation of δ from δ = 0 at τ = −∞ to

δ = 2
√

2ε
[
1 − 4K2 − 12(K3 −K

′
3)

]
at τ = +∞, where

ωc =
√
ε

2

[
1 − ε

2
+ 4K2 + 18K

′
3 + 6(K3 −K

′
3)

]
.

We can calculate the classical action by integrating the Euclidean action of equation (2) with
the above instanton solution, and the result is found to be

Scl = 25/2

3
Sε3/2

[
1 +

ε

2
− 8K2 − 18K

′
3 − 24(K3 −K

′
3)

]
. (39)

From equation (37) we obtain that the height of barrier is

U = 2K1VE1(δm) = K1V ε
2
[
1 − 4K2 − 18(K3 −K

′
3)

]
at δm = √

2ε[1 − 4K2 − 12(K3 −K
′
3)], and the frequency of oscillation around the minimum

of the inverted potential −E1(δ) is

ωb = √
ε

[
1 − ε

2
+ 4K2 + 18K

′
3 + 6(K3 −K

′
3)

]
=

√
2ωc.

Then the WKB exponent is approximately given by

B � U

h̄ωb
= 1

2
Sε3/2

[
1 +

ε

2
− 8K2 − 18K

′
3 − 24(K3 −K

′
3)

]
(40)

which agrees up to the numerical factor with equation (39) obtained by applying the explicit
instanton solution. The temperature corresponding to the crossover from the quantum coher-
ence between the degenerate ground-state levels (coherent tunnelling) to the classical over-
barrier transition (incoherent transition) is found to be

kBTc = 3

25/2
ε1/2K1V

S

[
1 − ε

2
+ 4K2 + 18K

′
3 + 6(K3 −K

′
3)

]
(41)

and the temperature corresponding to the crossover from quantum coherence between the
degenerate ground-state levels (coherent tunnelling) to quantum tunnelling from excited levels
(thermally assisted tunnelling or incoherent tunnelling) is found to be

kBT
′
c = 1

π
ε1/2K1V

S

[
1 − ε

2
+ 4K2 + 18K

′
3 + 6(K3 −K

′
3)

]
. (42)

By applying the instanton technique for single-domain FM particles in the spin-coherent-state
path-integral representation [12], we obtain the instanton’s contribution to the tunnel splitting,
h̄�0, as

h̄�0 = 213/4

π1/2
(VK1)S

−1/2ε5/4

[
1 − ε

4
+ 9K

′
3 − 6(K3 −K

′
3)

]
e−Scl (43)

where the WKB exponent or the classical action Scl is clearly shown in equation (39). Then the
splitting of the ground state due to resonant coherently quantum tunnelling of the magnetization
vector between energetically degenerate states is found to be h̄� = 2h̄�0 for FM particles
with hexagonal crystal symmetry in a magnetic field applied perpendicular to the anisotropy
axis (θH = π/2) with the help of the effective Hamiltonian approach.
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4.2. π/2 + O(ε3/2) < θH < π −O(ε3/2)

For this case, η ≈ √
2ε/3 and the critical angle θc is found to be

sin θc = 1

(1 + |cot θH |2/3)1/2

[
1 +

8

3
K2

|cot θH |2/3

1 + |cot θH |2/3
+ 8(K3 −K

′
3)

|cot θH |2/3

(1 + |cot θH |2/3)2

]
.

Now E1(δ) becomes

E1(δ) = 1

2

|cot θH |1/3

1 + |cot θH |2/3

[
1 − 4

3
K2

7 − 4|cot θH |2/3

1 + |cot θH |2/3

+ 2(K3 −K
′
3)

11 − 16|cot θH |2/3

(1 + |cot θH |2/3)2

]
(
√

6εδ2 − δ3). (44)

Then the classical equations of motion have the following bounce solution:

φ = i(6ε)3/4|cot θH |1/6(1 + |cot θH |2/3)1/2

[
1 +

ε

2
− 4

3
K2

5 − |cot θH |2/3

1 + |cot θH |2/3

− 18K
′
3

1

1 + |cot θH |2/3
− 2(K3 −K

′
3)

7 − 6|cot θH |2/3

(1 + |cot θH |2/3)2

]
sinh(ωcτ )

cosh3(ωcτ )
(45)

and

δ =
√

6ε/ cosh2(ωcτ )

corresponding to the variation of δ from δ = 0 at τ = −∞ to the turning point δ = √
6ε at

τ = 0, and then back to δ = 0 at τ = +∞, where

ωc =
(

3

8

)1/4

ε1/4 |cot θH |1/6

1 + |cot θH |2/3

[
1 − ε

2
+

4

3
K2

5 − 3|cot θH |2/3

1 + |cot θH |2/3

+ 18K
′
3

1

1 + |cot θH |2/3
+ 2(K3 −K

′
3)

7 − 10|cot θH |2/3

(1 + |cot θH |2/3)2

]
.

The classical action associated with this bounce solution is found to be

Scl = 217/431/4

5
Sε5/4|cot θH |1/6

[
1 +

ε

2
+

4

3
K2

2 − |cot θH |2/3

1 + |cot θH |2/3

− 18K
′
3

1

1 + |cot θH |2/3
+ 4(K3 −K

′
3)

2 − 3|cot θH |2/3

(1 + |cot θH |2/3)2

]
. (46)

For this case, the barrier height U (=2K1VE1(δm = 2
√

6ε/3)) is given by

U = 27/2

33/2
(K1V )ε

3/2 |cot θH |1/3

1 + |cot θH |2/3

[
1 +

4

3
K2

7 − 4|cot θH |2/3

1 + |cot θH |2/3

+ 2(K3 −K
′
3)

11 − 16|cot θH |2/3

(1 + |cot θH |2/3)2

]
and the frequency of small oscillations of the magnetization vector around the minimum of
the inverted potential −E1(δ) is

ωb = 31/421/4ε1/4 |cot θH |1/6

1 + |cot θH |2/3

[
1 − ε

2
+

4

3
K2

5 − 3|cot θH |2/3

1 + |cot θH |2/3

+ 18K
′
3

1

1 + |cot θH |2/3
+ 2(K3 −K

′
3)

7 − 10|cot θH |2/3

(1 + |cot θH |2/3)2

]
= 2ωc.
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Then the WKB exponent is approximately given by

B � U

h̄ωb
= 29/4

37/4
Sε5/4|cot θH |1/6

[
1 +

ε

2
+

4

3
K2

2 − |cot θH |2/3

1 + |cot θH |2/3

− 18K
′
3

1

1 + |cot θH |2/3
+ 4(K3 −K

′
3)

2 − 3|cot θH |2/3

(1 + |cot θH |2/3)2

]
(47)

which agrees with equation (46) up to the numerical factor. Equating the classical action Scl to
U/kBTc, where U is the barrier height, we obtain that the crossover from quantum to classical
behaviour occurs at

kBTc = 5

23/437/4
ε1/4K1V

S

|cot θH |1/6

1 + |cot θH |2/3

[
1 − ε

2
+

4

3
K2

5 − 3|cot θH |2/3

1 + |cot θH |2/3

+ 18K
′
3

1

1 + |cot θH |2/3
+ 2(K3 −K

′
3)

7 − 10|cot θH |2/3

(1 + |cot θH |2/3)2

]
. (48)

On the basis of the instanton technique [12], we obtain the tunnelling rate corresponding
to the escaping of the magnetization vector from the metastable state for single-domain FM
nanoparticles with hexagonal crystal symmetry in a magnetic field applied in the range of
π/2 + O(ε3/2) < θH < π − O(ε3/2) as the following equation:

� = 231/837/8

π1/2

V

h̄
K1S

−1/2ε7/8 |cot θH |1/4

1 + |cot θH |2/3

[
1 − ε

4
+ 9K

′
3

1

1 + |cot θH |2/3

− 2

3
K2

12 − 7|cot θH |2/3

1 + |cot θH |2/3
+ 2(K3 −K

′
3)

9 − 13|cot θH |2/3

(1 + |cot θH |2/3)2

]
e−Scl (49)

where the WKB exponent or the classical action Scl has been clearly shown in equation (46).

4.3. θH = π

Finally, we study the MQT of the magnetization vector corresponding to the escaping from
the metastable state in single-domain FM nanoparticles with hexagonal crystal symmetry in a
magnetic field applied at θH = π , i.e., antiparallel to the anisotropy axis. Now the total energy
becomes

E(δ, φ) = K
′
3 [1 − cos(6φ)] δ6 +

1

2
δ2

[
ε − 1

4
(1 − 8K2)δ

2

]
− 1

24
δ4

{
ε − 1

2

[
1 − 32K2 + 48(K3 −K

′
3)

]
δ2

}
. (50)

The classical equations of motion have the bounce solution

φ = −iωcτ +
nπ

3

δ =
√

4ε

1 − 8K2 − ε[32K
′
3(1 − cosh(6ωcτ)) + 1

3 (1 − 48K2 + 96(K3 −K
′
3))]

(51)

where n = 0, 1, 2, 3, 4, 5, and ωc = ε. The corresponding classical action is found to be

Scl = 2

3
Sε

1

�1
ln

(
2�1

�2

)
(52)

with

�1 = 1 − 8K2 − 32K
′
3ε − 1

3
ε
[
1 − 48K2 + 96(K3 −K

′
3)

]
(53)
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and

�2 = 32K
′
3ε. (54)

According to the formulae in reference [12], we obtain the tunnelling rate of the magnetization
vector escaping from the metastable state for single-domain FM nanoparticles with hexagonal
crystal symmetry in a magnetic field applied antiparallel to the anisotropy axis (θH = π) as

� = 213/231/2

π1/2

V

h̄
K1S

−1/2ε(1 + 4K2)

× 1

1 − 16K2 − 64K
′
3ε − 2

3 [1 − 48K2 + 96(K3 −K
′
3)]

e−Scl (55)

where the WKB exponent or the classical action Scl is shown in equation (52). Equation (50)
shows that in this case |φ| � 1 is not valid, and therefore the problem cannot be reduced to the
one-dimensional motion problem. And the effective potential energy and the effective mass
in one-dimensional form are not appropriate for the present case.

Now we discuss the range of angles for which equation (46) is valid. Introducing
θ1 = θH − π/2 and θ2 = π − θH , from equations (39), (46), and (52), we find that

θ1 ≈ (562−21/23−15/2)ε3/2 θ2 ≈ (5−6239/2315/2)ε3/2.

This means that equation (46) is almost valid over a wide range of angles 91◦ � θH � 179◦

for ε = 0.001.
For the single-domain FM nanoparticle with hexagonal crystal symmetry in the presence

of an external magnetic field at arbitrarily directed angle, by using equations (39) and (43) for
θH = π/2, equations (46) and (49) for π/2 + O(ε3/2) < θH < π−O(ε3/2), and equations (52)
and (55) for θH = π , we obtain the ground-state tunnel splitting for MQC and the tunnelling
rate for MQT of the magnetization vector. Our results show that the tunnel splitting and
the tunnelling rate depend distinctly on the orientation of the external magnetic field. When
θH = π/2, the magnetic field is applied perpendicular to the anisotropy axis, and when
θH = π , the field is antiparallel to the anisotropy axis. It is found that even a very small
misalignment of the field with the above two orientations can completely change the results
for the tunnelling rates. Another interesting observation concerns the dependence of the WKB
exponent or the classical action on the strength of the external magnetic field. Over a wide
range of angles, the dependence on ε (=1−H/Hc) of the WKB exponent Scl is given by ε5/4,
not ε3/2, for θH = π/2, and ε for θH = π . Therefore, both the orientation and the strength of
the external magnetic field are control parameters for an experimental test for MQT and MQC
of the magnetization vector in single-domain FM nanoparticles.

5. Conclusions

In summary we have investigated the tunnelling behaviours of the magnetization vector in
single-domain FM nanoparticles in the presence of an external magnetic field at arbitrarily
directed angle. We consider the magnetocrystalline anisotropy with the trigonal crystal
symmetry and that with the hexagonal crystal symmetry. By applying the instanton technique
in the spin-coherent-state path-integral representation, we obtain both the WKB exponent and
the pre-exponential factors in the tunnel splitting between energetically degenerate states in
MQC and the tunnelling rate for escaping from a metastable state in MQT of the magnetization
vector in the low-barrier limit for the external magnetic field perpendicular to the easy axis
(θH = π/2), for the field antiparallel to the initial easy axis (θH = π), and for the field
at an angle between these two orientations (π/2 + O(ε3/2) < θH < π − O(ε3/2)). One
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important conclusion is that the tunnelling rate and the tunnel splitting depend distinctly on
the orientation of the external magnetic field. Another interesting conclusion concerns the
field strength dependence of the WKB exponent or the classical action. We have found that
over a wide range of angles, the dependence on ε (=1 − H/Hc) of the WKB exponent or
the classical action Scl is given by ε5/4, not ε3/2, for θH = π/2, and ε for θH = π . We have
obtained the temperatures corresponding to the crossover from the quantum to the thermal
regime which are found to depend distinctly on the orientation of the external magnetic field.
As a result, we conclude that both the orientation and the strength of the external magnetic field
are controllable parameters for an experimental test of the phenomena of macroscopic quantum
tunnelling and coherence of the magnetization vector in single-domain FM nanoparticles with
trigonal and hexagonal symmetries at a temperature well below the crossover temperature.
We have analysed the validity of the semiclassical approximation applied in the present work,
and have found that the semiclassical approximation should be already rather good for typical
values of the parameters for single-domain FM nanoparticles.

Recently, Wernsdorfer and co-workers performed switching-field measurements on
individual ferrimagnetic and insulating BaFeCoTiO nanoparticles containing about 105–106

spins at very low temperatures (0.1–6 K) [7]. They found that above 0.4 K, the magnetization
reversal of these particles is unambiguously described by the Néel–Brown theory of thermally
activated rotation of the particle’s moment over a well-defined anisotropy energy barrier. Below
0.4 K, strong deviations from this model are evidenced which are quantitatively in agreement
with the predictions of the MQT theory without dissipation [3]. The BaFeCoTiO nanoparticles
have a strong uniaxial magnetocrystalline anisotropy [7]. However, the theoretical results
presented here may be useful for checking the general theory for a wide range of systems, with
more general symmetries. The experimental procedures for single-domain FM nanoparticles
of barium ferrite with uniaxial symmetry [7] may be applied to systems with more general
symmetries. Note that the inverse of the WKB exponent B−1 is the magnetic viscosity
S for the quantum-tunnelling-dominated regime T � Tc studied by magnetic relaxation
measurements [1]. Therefore, the quantum tunnelling of the magnetization should be checked
at any θH by magnetic relaxation measurements. Over the past few years a lot of experimental
and theoretical works have been performed on the spin tunnelling in molecular Mn12-Ac [22]
and Fe8 [23] clusters having a collective spin state S = 10 (in this paper S = 106). Further
experiments should focus on the level quantization of collective spin states of S = 102–104.
We hope that the theoretical results presented in this paper may stimulate more experiments
whose aim is observing macroscopic quantum phenomena in nanometre-scale single-domain
ferromagnets.
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Appendix A. Evaluation of the pre-exponential factors in the WKB tunnelling rate

In this appendix, we review briefly the procedure for calculating the pre-exponential factors in
the WKB rate of quantum tunnelling of the magnetization vector in single-domain FM particles,
based on the instanton technique in the spin-coherent-state path-integral representation [12].
The pre-exponential factors in the tunnelling rate (MQT) or the tunnel splitting (MQC) are due
to the quantum fluctuations about the classical path, which can be evaluated by expanding the
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Euclidean action to second order in small fluctuations. Then we apply this approach to obtain
the instanton’s contribution to the ground-state tunnel splitting for resonant coherent quantum
tunnelling of the magnetization vector in FM particles with trigonal crystal symmetry in an
external magnetic field applied perpendicular to the anisotropy axis (considered in section 3)
in detail.

In reference [12], Garg and Kim have studied the general formulae for evaluating both the
WKB exponent and the pre-exponential factors in the tunnelling rate or the tunnel splitting in
the single-domain FM particles on the basis of the instanton technique in the spin-coherent-
state path-integral representation, without assuming a specific form of the magnetocrystalline
anisotropy and the external magnetic field. Here we explain briefly the basic idea of this
calculation. Such a calculation consists of two major steps. The first step is to find the
classical, or least-action path (instanton) from the classical equations of motion, which gives
the exponent or the classical action in the WKB tunnelling rate. Instantons in one-dimensional
field theory can be viewed as pseudoparticles with trajectories existing in the energy barrier, and
are therefore responsible for quantum tunnelling. The second step is to expand the Euclidean
action to second order in the small fluctuations about the classical path, and then evaluate
the Van Vleck determinant of the resulting quadratic form [11, 12]. For single-domain FM
particles, writing θ(τ ) = θ(τ ) + θ1(τ ) and φ(τ) = φ(τ) + φ1(τ ), where θ and φ denote the
classical path, one obtains the Euclidean action of equation (2) as SE[θ(τ ), φ(τ)] ≈ Scl + δ2S

with Scl being the classical action or the WKB exponent and δ2S being a functional of small
fluctuations θ1 and φ1 [12]:

δ2S = −iS
∫

d

dτ

[
sin θθ1

]
φ1 dτ +

i

2
S

∫
cos θ

(
dφ

dτ

)
θ2

1 dτ

+
V0

2h̄

∫
(Eθθθ

2
1 + 2Eθφθ1φ1 + Eφφφ

2
1) dτ (A.1)

where

Eθθ = (∂2E/∂θ2)θ=θ,φ=φ
Eθφ = (∂2E/∂θ ∂φ)θ=θ,φ=φ
Eφφ = (∂2E/∂φ2)θ=θ,φ=φ.

Under the condition that Eφφ > 0, the Gaussian integration can be performed over φ1, and
the remaining path integral over θ1 can be cast into the standard form for a one-dimensional
motion problem. As usual, there exists a zero mode, dθ/dτ , corresponding to a translation of
the centre of the instanton, and a negative eigenvalue in the MQT problem [11,12]. This leads
to the imaginary part of the energy, which corresponds to the quantum rate of escape from
the metastable state through the classically impenetrable barrier to a stable one. The resonant
tunnel splittings of the ground state for the MQC problem can be evaluated by applying a
similar technique. What is needed for the calculation of the tunnelling rate (in MQT) and
the tunnel splitting (in MQC) is the asymptotic relation of the zero mode, dθ/dτ , for large
τ [11, 12]:

dθ/dτ ≈ ae−µζ as ζ → ∞. (A.2)

The new time variable ζ in equation (A2) is related to τ as

dζ = dτ/2A(θ(τ), φ(τ)) (A.3)

where

A(θ, φ) = h̄S2 sin2 θ/2VEφφ. (A.4)
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The partial derivatives are evaluated at the classical path. Then the instanton’s contribution
to the tunnelling rate for MQT or the tunnel splitting for MQC of the magnetization vector in
single-domain FM nanoparticles (without the contribution of the topological Wess–Zumino,
or Berry phase term in the Euclidean action) is given by [11, 12]

|a|(µ/π)1/2e−Scl . (A.5)

Therefore, all that is necessary is to differentiate the classical path (instanton) to obtain dθ/dτ ,
then convert from τ to the new time variable ζ according to equations (A3) and (A4), and read
off a and µ by comparison with equation (A2). If the condition Eφφ > 0 is not satisfied, one
can always perform the Gaussian integration over θ1 and end up with a one-dimensional path
integral over φ1.

Now we apply this approach to the problem of resonant coherent quantum tunnelling
of the magnetization vector between energetically degenerate easy directions in single-
domain FM nanoparticles with trigonal crystal symmetry in an external magnetic field applied
perpendicular to the anisotropy axis. After some algebra, we find that

Eφφ ≈ 2K1(1 + 12K2 − ε) (A.6)

which is positive. So we can perform the Gaussian integration over φ1 directly. The relation
between τ and the new imaginary-time variable ζ for this MQC problem is found to be

τ = h̄S2

2K1V (1 + 12K2 − ε)
ζ. (A.7)

It is easy to differentiate the instanton solution to obtain

dδ

dτ
= 8

K1V

h̄S
ε

(
1 + 15K2 − ε

2

)
exp

[
−

√
2εS

(
1 − 3

2
K2 +

ε

2

)
ζ

]
(A.8)

as ζ → ∞. Thus,

|a| = 8
K1V

h̄S
ε

(
1 + 15K2 − ε

2

)
(A.9)

and

µ =
√

2εS

(
1 − 3

2
K2 +

ε

2

)
. (A.10)

Substituting equations (A9) and (A10) into the general formula (A5), and using equation (17)
for the classical action or the WKB exponent, we obtain the instanton’s contribution to
the tunnel splitting h̄�0 as expressed in equation (21) for nanometre-scale single-domain
ferromagnets with trigonal crystal symmetry in the presence of an external magnetic field
applied perpendicular to the anisotropy axis.

The calculations of the tunnel splitting and the tunnelling rate of the magnetization vector
for other MQT and MQC problems considered in the present work can be performed by
applying similar techniques, and we will not discuss them any further.
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[4] Kim G-H and Hwang D S 1997 Phys. Rev. B 55 8918
[5] Kim G-H 1998 Phys. Rev. B 57 10 688
[6] Garanin D A, Hidalgo X M and Chudnovsky E M 1998 Phys. Rev. B 57 13 639
[7] Wernsdorfer W, Orozco E B, Hasselbach K, Benoit A, Mailly D, Kubo O, Nakano H and Barbara B 1997 Phys.

Rev. Lett. 79 4014
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